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Algebraic vs Transcendental

Recall that a complex number α ∈ C is called algebraic if there exists a
nonzero polynomial f ∈ Q[x ] such that f (α) = 0. The degree of α
is defined to be the degree of the extension Q(α)/Q. It is easy to find
algebraic numbers of any degrees because of the following theorem.

The Fundamental Theorem of Algebra

Every non-constant polynomial f ∈ C[x ] has a zero in C.

The set Q ⊆ C of all algebraic numbers is a field.

Examples
√

2 + i ,
√

3
√

2 + 5
√

3, 3
√

10/ 5
√

12,
√

3e2πi/7 − 2e2πi/5 are all algebraic.

A complex number α ∈ C is called transcendental if α /∈ Q. Unlike Q, the
set of all transcendental numbers in C does not possess good algebraic
structures.
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Basic Questions

Here are some natural questions to ask about transcendental numbers.

Question 1

Do transcendental numbers exist? If yes, how many are there compared to
algebraic numbers?

Question 2

Can one exhibit a transcendental number?

Question 3

Is e = 2.718... transcendental? What about π = 3.141...?
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History

Euler (1744) showed that e is irrational.

Lambert (1761) showed that π is irrational.

Liouville (1840) proved that e2 is irrational.

Liouville (1844) constructed, for the first time, a class of

transendental numbers including
∞∑
n=1

10−n!.

Hermite (1873) proved that e is transcendental.

Cantor (1874) showed that almost all complex numbers are
transcendental.

Lindemann (1882) established the transcendence of π.
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Squaring the Circle

A geometric problem proposed by ancient Greeks asks whether it is
possible to construct a square with the same area as a given circle with
compass and straightedge only. Algebraically, one is asked to find an
algebraic number x satisfying the equation x2 = π. Lindemann’s result
implies that

√
π is transcendental, proving that this problem is unsolvable.

1

√
π
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Preliminary Lemmas

We need the following lemma.

Lemma 1

Let R be a domain and c ∈ R. Suppose f ∈ R[x ]. Then f (j)(c)/j! ∈ R for
all j ≥ 0.

Proof.

Since R[x ] = R[x − c], we may write

f (x) =
m∑
j=0

aj(x − c)j ,

where m = deg f and a0, ..., am ∈ R. It follows that aj = f (j)(c)/j! ∈ R for
all 0 ≤ j ≤ m. For j > m we have f (j)(c) = 0.
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Preliminary Lemmas

Let f (x) =
m∑
r=0

arx
r be a polynomial of degree m with complex

coefficients, and let f̄ (x) :=
m∑
r=0
|ar |x r . For z ∈ C, define

I (z) :=

∫ z

0
ez−t f (t) dt.

Lemma 2

I (z) satisfies the following properties:

(i) I (z) = ez
m∑
j=0

f (j)(0)−
m∑
j=0

f (j)(z).

(ii) |I (z)| ≤ |z |e |z|f̄ (|z |).
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Transcendence of e

Theorem 1 (Hermite, 1873)

e is transcendental.

Proof.

Assume e ∈ Q. Then there exist a0, ..., an ∈ Z such that a0 6= 0 and

n∑
k=0

ake
k = 0. (1)

Define an auxiliary polynomial

f (x) := xp−1(x − 1)p · · · (x − n)p,

where p is a prime, and consider

J :=
n∑

k=0

ak I (k).
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Transcendence of e

Proof (Cont).

It is clear that m := deg f = (n + 1)p − 1. By Lemma 2 and (1) we have

J =
n∑

k=0

ake
k

m∑
j=0

f (j)(0)−
n∑

k=0

ak

m∑
j=0

f (j)(k) = −
m∑
j=0

n∑
k=0

ak f
(j)(k).

Observe that f (j)(k) = 0 in each of the following two cases:

0 ≤ j < p and 1 ≤ k ≤ n.

0 ≤ j < p − 1 and k = 0.

Note also that
f (p−1)(0) = (p − 1)!(−1)np(n!)p.

By Lemma 1, f (j)(k) ≡ 0 (mod j!) for all j ≥ p and 0 ≤ k ≤ n. Hence,
we have
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Transcendence of e

Proof (Cont).

J ≡ a0(p − 1)!(−1)np(n!)p (mod p!).

Choose p so large that p > max(n, |a0|). Then (p − 1)! | J but p! - J.
This implies that |J| ≥ (p − 1)!. On the other hand, we have

f̄ (k) ≤ kp−1(k + 1)p...(k + n)p ≤ ((2n)!)p

for all 0 ≤ k ≤ n. It follows from Lemma 2 that

|J| ≤
n∑

k=0

|ak ||I (k)| ≤
n∑

k=0

k|ak |ek f̄ (k)� ((2n)!)p.

So (p − 1)!� ((2n)!)p. This is false when p is sufficiently large.
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Algebraic Numbers and Algebraic Integers

We need a few more concepts and facts about algebraic numbers.

1 The Galois conjugates of an algebraic number α are the complex
zeros of the minimal polynomial of α (over Q).

2 A complex number α is called an algebraic integer if it is a zero
of a monic non-constant polynomial f ∈ Z[x ]. One can show that
α is an algebraic integer if and only if its minimal polynomial has
integer coefficients.

3 The set Z ⊆ Q of all algebraic integers in C is a domain with the
property that Z ∩Q = Z.

4 Suppose that α ∈ Q is a zero of f ∈ Z[x ] with leading coefficient
c 6= 0. Then cα ∈ Z.
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Symmetric Polynomials

Let n ∈ N+. For each 1 ≤ k ≤ n, the kth elementary symmetric
polynomial in n variables is defined by

ek(x1, ..., xn) :=
∑

1≤i1<...<ik≤n
xi1 · · · xik .

A polynomial P(x1, ..., xn) is called a symmetric polynomial if
P(xσ(1), ..., xσ(n)) = P(x1, ..., xn) for all permutation σ ∈ Sn.

Theorem (Fundamental Theorem of Symmetric Polynomials)

Let R be a commutative ring. Then for every symmetric polynomial
P ∈ R[x1, ..., xn], there exists a unique Q ∈ R[x1, ..., xn] such that

P(x1, ..., xn) = Q(e1(x1, ..., xn), ..., en(x1, ..., xn)).
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Symmetric Polynomials

Lemma 3

Let f , g ∈ Z[x ] with g monic. Suppose that α1, ..., αn are the zeros of g .
Then for every j ≥ 0,

1

j!

n∑
k=1

f (j)(αk) ∈ Z.

Proof.

Consider the symmetric polynomial

P(x1, ..., xn) :=
n∑

k=1

f (j)(xk) ∈ Z[x1, ..., xn].

There exists Q ∈ Z[x1, ..., xn] such that

P(x1, ..., xn) = Q(e1(x1, ..., xn), ..., en(x1, ..., xn)).
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Symmetric Polynomials

Proof (Cont).

Let g(x) = xn + an−1x
n−1 + ...+ a0 ∈ Z[x ]. Then for 1 ≤ r ≤ n, we have

er (α1, ..., αn) = (−1)ran−r ∈ Z. Hence

P(α1, ..., αn) = Q(e1(α1, ..., αn), ..., en(α1, ..., αn)) ∈ Z.

Since α1, ..., αn ∈ Z, it follows from Lemma 1 that

1

j!
P(α1, ..., αn) =

n∑
k=1

f (j)(αk)

j!
∈ Z.

Therefore, we have

1

j!
P(α1, ..., αn) ∈ Z ∩Q = Z.

This completes the proof.
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Transcendence of π

Theorem 2 (Lindemann, 1882)

π is transcendental.

Proof.

Assume π ∈ Q. Then θ := πi ∈ Q. Let θ1 = θ, θ2, ..., θd be the Galois
conjugates of θ.

By Euler’s formula eπi + 1 = 0 we have

(eθ1 + 1) · · · (eθd + 1) = 0.

Expanding the product on the left-hand side we find∑
α

eα = 0,

where the sum is over all α = ε1θ1 + ...+ εdθd with ε1, ..., εd ∈ {0, 1}.
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Transcendence of π

Proof (Cont).

Suppose precisely n of α’s are nonzero, say α1, ..., αn. Then

q + eα1 + ...+ eαn = 0, (2)

where q = 2d − n. Let c be a positive integer such that cθ1, ..., cθd are
algebraic integers.

Define an auxiliary polynomial

f (x) := (cx)p−1(cx − cα1)p · · · (cx − cαn)p,

where p is a prime. Then f ∈ Z[x ] with degree m = (n + 1)p − 1. Let

J :=
n∑

k=1

I (αk).
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Transcendence of π

Proof (Cont).

By Lemma 2 and (2) we have

J = −q
m∑
j=0

f (j)(0)−
m∑
j=0

n∑
k=1

f (j)(αk).

Let
g(x) := f (x/c) = xp−1(x − cα1)p · · · (x − cαn)p.

Then
(x − cα1) · · · (x − cαn) ∈ Z[x ]

and thus f , g ∈ Z[x ]. By Lemma 3 we have

1

j!

n∑
k=1

g (j)(cαk) ∈ Z.
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Transcendence of π

Proof (Cont).

Since f (x) = g(cx), we have

1

j!

n∑
k=1

f (j)(αk) =
c j

j!

n∑
k=1

g (j)(cαk) ∈ Z.

Observe that f (j)(αk) = 0 if 0 ≤ j < p − 1 and

n∑
k=1

f (j)(αk) ≡ 0 (mod j!)

if j ≥ p. So we have

m∑
j=0

n∑
k=1

f (j)(αk) ≡ 0 (mod p!).
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Transcendence of π

Proof (Cont).

By Lemma 1, we have f (j)(0) ≡ 0 (mod j!) for all j ≥ p. Note also that
f (j)(0) = 0 if 0 ≤ j < p − 1 and that

f (p−1)(0) = cp−1(−1)np(p − 1)![(cα1) · · · (cαn)]p.

Hence, we have

J ≡ cp−1(−1)np(p − 1)![(cα1) · · · (cαn)]p (mod p!).

Choose p sufficiently large so that p > max(c , |(cα1) · · · (cαn)|). Then
(p − 1)! | J but p! - J. This implies that |J| ≥ (p − 1)!.

Steve Fan GSS Talk April 14, 2021 22 / 32



Transcendence of π

Proof (Cont).

By Lemma 1, we have f (j)(0) ≡ 0 (mod j!) for all j ≥ p. Note also that
f (j)(0) = 0 if 0 ≤ j < p − 1 and that

f (p−1)(0) = cp−1(−1)np(p − 1)![(cα1) · · · (cαn)]p.

Hence, we have

J ≡ cp−1(−1)np(p − 1)![(cα1) · · · (cαn)]p (mod p!).

Choose p sufficiently large so that p > max(c , |(cα1) · · · (cαn)|). Then
(p − 1)! | J but p! - J. This implies that |J| ≥ (p − 1)!.

Steve Fan GSS Talk April 14, 2021 22 / 32



Transcendence of π

Proof (Cont).

On the other hand, we have

f̄ (|αk |) ≤ (cA)m2np

for all 1 ≤ k ≤ n, where A = max
1≤k≤n

|αk |.

It follows from Lemma 2 that

|J| ≤
n∑

k=1

|I (αk)| ≤
n∑

k=1

kek f̄ (|αk |)� Bp

for some constant B > 0. So (p − 1)!� Bp. This is impossible when p is
sufficiently large.

Steve Fan GSS Talk April 14, 2021 23 / 32



Transcendence of π

Proof (Cont).

On the other hand, we have

f̄ (|αk |) ≤ (cA)m2np

for all 1 ≤ k ≤ n, where A = max
1≤k≤n

|αk |. It follows from Lemma 2 that

|J| ≤
n∑

k=1

|I (αk)| ≤
n∑

k=1

kek f̄ (|αk |)� Bp

for some constant B > 0. So (p − 1)!� Bp. This is impossible when p is
sufficiently large.

Steve Fan GSS Talk April 14, 2021 23 / 32



Table of Contents

1 Introduction

2 Transcendence of e

3 Transcendence of π

4 Generalizations

5 Open Problems

Steve Fan GSS Talk April 14, 2021 24 / 32



The Lindemann-Weierstrass Theorem

Lindemann proved in 1882 that if α ∈ Q \ {0}, then eα is transcendental.
In 1885, Weierstrass proved the following more general theorem.

Theorem (Lindemann-Weierstrass, 1885)

Let α1, ..., αn be distinct algebraic numbers. Then eα1 , ..., eαn are linearly
independent over Q.

Corollary 1

Let α ∈ Q \ {0}. Then sinα, cosα, tanα are all transcendental.

Corollary 2

Let α ∈ Q \ {0, 1}. Then logα is transcendental.
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The Gelfond–Schneider Theorem

In 1900 Hilbert raised the following question at the International Congress
of Mathematicians held in Paris.

Hilbert’s 7th Problem

Is αβ transcendental for any α ∈ Q \ {0, 1} and any irrational β ∈ Q?

This problem was solved by Gelfond and Schneider independently in 1934.

Theorem (Gelfond-Schneider, 1934)

αβ is transcendental for any α ∈ Q \ {0, 1} and any irrational β ∈ Q.

Corollary 3

2
√
2 and eπ are both transcendental.
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Baker’s Theorem

The Gelfond–Schneider theorem is equivalent to the statement that if
α, β ∈ Q \ {0} are such that logα, log β are linearly independent over Q,
then they are linearly independent over Q.

In 1966 Baker obtained the following generalization.

Theorem (Baker, 1966)

If α1, ..., αn are nonzero algebraic numbers such that logα1, ..., logαn

are linearly independent over Q, then 1, logα1, ..., logαn are linearly
independent over Q.

Corollary 4

eβ0αβ11 · · ·α
βn
n is transcendental for any α1, ..., αn, β0, ..., βn ∈ Q \ {0}.
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Baker’s Theorem and Thue’s Equation

Baker obtained an effective lower bound for the absolute value of

Λ = β0 + β1 logα1 + ...+ βn logαn

in terms of the degrees and heights of α1, ..., αn ∈ Q \ {0}, β0, ..., βn ∈ Q:
if Λ 6= 0, then |Λ| > B−C , where B,C > 0 are effective constants.

Using
this lower bound he proved the following theorem.

Theorem (Thue, 1909)

Let

f (x , y) :=
n∑

k=0

akx
kyn−k ∈ Z[x ]

be an irreducible polynomial of degree n ≥ 3. Then for every m ∈ Z \ {0},
the equation f (x , y) = m has finitely many solutions (x , y) ∈ Z2.
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Open Problems

Are e ± π, eπ, πe irrational/transcendental?

Is Euler’s constant

γ = lim
N→∞

(
N∑

n=1

1

n
− logN

)

irrational/transcendental?

In 1978 Apéry established the irrationality of ζ(3), where

ζ(s) =
∞∑
n=1

1

ns
.

Is ζ(3) transcendental? What about ζ(k) for odd k ≥ 5?

The Gelfond-Schneider theorem implies that log 2, log 3 are linearly
independent over Q. Are they algebraically independent?
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Open Problems

The six exponentials theorem, proved independently by Lang and
Ramachandra, states that if x1, x2, x3 ∈ C and y1, y2 ∈ C are such
that x1, x2, x3 are linearly independent over Q and y1, y2 are linearly
independent over Q, then at least one of the following six numbers

exiyj , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2,

is transcendental. It is conjectured that if x1, x2 ∈ C and y1, y2 ∈ C
are such that each pair is linearly independent over Q, then at least
one of the four numbers exiyj is transcendental. This is now referred
to as the four exponentials conjecture.
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Thank you for your attention!
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